1,529 research outputs found

    On the equality of Hausdorff and box counting dimensions

    Full text link
    By viewing the covers of a fractal as a statistical mechanical system, the exact capacity of a multifractal is computed. The procedure can be extended to any multifractal described by a scaling function to show why the capacity and Hausdorff dimension are expected to be equal.Comment: CYCLER Paper 93mar001 Latex file with 3 PostScript figures (needs psfig.sty

    Phase shift in experimental trajectory scaling functions

    Full text link
    For one dimensional maps the trajectory scaling functions is invariant under coordinate transformations and can be used to compute any ergodic average. It is the most stringent test between theory and experiment, but so far it has proven difficult to extract from experimental data. It is shown that the main difficulty is a dephasing of the experimental orbit which can be corrected by reconstructing the dynamics from several time series. From the reconstructed dynamics the scaling function can be accurately extracted.Comment: CYCLER Paper 93mar008. LaTeX, LAUR-92-3053. Replaced with a version with all figure

    Ultrasmall volume Plasmons - yet with complete retardation effects

    Full text link
    Nano particle-plasmons are attributed to quasi-static oscillation with no wave propagation due to their subwavelength size. However, when located within a band-gap medium (even in air if the particle is small enough), the particle interfaces are acting as wave-mirrors, incurring small negative retardation. The latter when compensated by a respective (short) propagation within the particle substantiates a full-fledged resonator based on constructive interference. This unusual wave interference in the deep subwavelength regime (modal-volume<0.001lambda^3) significantly enhances the Q-factor, e.g. 50 compared to the quasi-static limit of 5.5.Comment: 16 pages, 6 figure

    Born-Regulated Gravity in Four Dimensions

    Get PDF
    Previous work involving Born-regulated gravity theories in two dimensions is extended to four dimensions. The action we consider has two dimensionful parameters. Black hole solutions are studied for typical values of these parameters. For masses above a critical value determined in terms of these parameters, the event horizon persists. For masses below this critical value, the event horizon disappears, leaving a ``bare mass'', though of course no singularity.Comment: LaTeX, 15 pages, 2 figure

    Interval Selection in the Streaming Model

    Full text link
    A set of intervals is independent when the intervals are pairwise disjoint. In the interval selection problem we are given a set I\mathbb{I} of intervals and we want to find an independent subset of intervals of largest cardinality. Let α(I)\alpha(\mathbb{I}) denote the cardinality of an optimal solution. We discuss the estimation of α(I)\alpha(\mathbb{I}) in the streaming model, where we only have one-time, sequential access to the input intervals, the endpoints of the intervals lie in {1,...,n}\{1,...,n \}, and the amount of the memory is constrained. For intervals of different sizes, we provide an algorithm in the data stream model that computes an estimate α^\hat\alpha of α(I)\alpha(\mathbb{I}) that, with probability at least 2/32/3, satisfies 12(1ε)α(I)α^α(I)\tfrac 12(1-\varepsilon) \alpha(\mathbb{I}) \le \hat\alpha \le \alpha(\mathbb{I}). For same-length intervals, we provide another algorithm in the data stream model that computes an estimate α^\hat\alpha of α(I)\alpha(\mathbb{I}) that, with probability at least 2/32/3, satisfies 23(1ε)α(I)α^α(I)\tfrac 23(1-\varepsilon) \alpha(\mathbb{I}) \le \hat\alpha \le \alpha(\mathbb{I}). The space used by our algorithms is bounded by a polynomial in ε1\varepsilon^{-1} and logn\log n. We also show that no better estimations can be achieved using o(n)o(n) bits of storage. We also develop new, approximate solutions to the interval selection problem, where we want to report a feasible solution, that use O(α(I))O(\alpha(\mathbb{I})) space. Our algorithms for the interval selection problem match the optimal results by Emek, Halld{\'o}rsson and Ros{\'e}n [Space-Constrained Interval Selection, ICALP 2012], but are much simpler.Comment: Minor correction

    Expanding direction of the period doubling operator

    Full text link
    We prove that the period doubling operator has an expanding direction at the fixed point. We use the induced operator, a ``Perron-Frobenius type operator'', to study the linearization of the period doubling operator at its fixed point. We then use a sequence of linear operators with finite ranks to study this induced operator. The proof is constructive. One can calculate the expanding direction and the rate of expansion of the period doubling operator at the fixed point

    Stochastics theory of log-periodic patterns

    Full text link
    We introduce an analytical model based on birth-death clustering processes to help understanding the empirical log-periodic corrections to power-law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastics theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of cooperative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t_{o} is derived in terms of birth-death clustering coefficients.Comment: LaTeX, 1 ps figure - To appear J. Phys. A: Math & Ge

    Bifurcations and Chaos in the Six-Dimensional Turbulence Model of Gledzer

    Full text link
    The cascade-shell model of turbulence with six real variables originated by Gledzer is studied numerically using Mathematica 5.1. Periodic, doubly-periodic and chaotic solutions and the routes to chaos via both frequency-locking and period-doubling are found by the Poincar\'e plot of the first mode v1v_1. The circle map on the torus is well approximated by the summation of several sinusoidal functions. The dependence of the rotation number on the viscosity parameter is in accordance with that of the sine-circle map. The complicated bifurcation structure and the revival of a stable periodic solution at the smaller viscosity parameter in the present model indicates that the turbulent state may be very sensitive to the Reynolds number.Comment: 19 pages, 12 figures submitted to JPS

    Gravity a la Born-Infeld

    Full text link
    A simple technique for the construction of gravity theories in Born-Infeld style is presented, and the properties of some of these novel theories are investigated. They regularize the positive energy Schwarzschild singularity, and a large class of models allows for the cancellation of ghosts. The possible correspondence to low energy string theory is discussed. By including curvature corrections to all orders in alpha', the new theories nicely illustrate a mechanism that string theory might use to regularize gravitational singularities.Comment: 21 pages, 2 figures, new appendix B with corrigendum: Class. Quantum Grav. 21 (2004) 529
    corecore